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Solitary waves in nonlinear dispersive systems with zero average dispersion
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The dynamics of a solitary wave in a nonlinear lossy system with varying dispersion and periodic amplifi-
cation is examined. It is demonstrated that in contrast to the traditional soliton model in which the average
dispersion balances the nonlinearity, in a nonlinear system with varying dispersion, stable pulse propagation is
possible even if the average dispersion is zero. As a practical example, we demonstrate dispersion-managed
soliton transmission in a cascaded optical amplifier system at zero average dispersion. The possibility of
transmitting a soliton with finite energy at zero dispersiatnen timing jitter is suppressgds very attractive
for practical applicationd.51063-651X98)50307-9

PACS numbeps): 42.65.Tg, 03.40.Kf

A nonlinear solitary wave is an example of a stable waveies from a sech profile to a Gaussian shape and further to a
packet that preserves its shape during propagation in a nosinclike profile with the change of the map strength. The
linear dispersive mediunisee, e.g.[1-5], and references evolving pulse is chirpedi.e., the pulse phase has a non-
therein. As is well known, this stability is provided by a trivial time dependende The energy of the stable breathing
balance between the effects of dispersion and nonlinearitypulse is well above that of the NLSE soliton with the same
Based on this rather general idea of compensating dispersiymilse width when the fiber has the corresponding average
broadening by nonlinearity, the soliton concept has beewlispersion. Due to the chirp of the pulse the interaction be-
used successfully in a wide range of physical and practicalween two neighboring dispersion-managed solitons is sup-
applications. Interest in soliton theory has additionally beerpressed as a result of the fast rotation of the relative phase.
stimulated by the discovery and development of the invers&lumerical modeling of the lossless system has shown that
scattering transform, which allows powerful mathematicalstable solitonlike propagation is possible along a fiber with
tools to be applied to the investigation of solitons in a varietyzero and even normal average disperdib8|. This regime
of physical applications. Integrable soliton systems modetlearly demonstrates a principal difference between a
important physical phenomena, for instance, optical signatlispersion-manage®M) soliton and the regular fundamen-
propagation in fiber transmission lines. Much progress hagal soliton. A DM soliton is then a new kind of information
already been made in the further development of solitorcarrier whose features differ significantly from that of the
theory in this context. Recent developments in lightwavefundamental soliton. Indeed, the properties of the DM soliton
communication systems have created opportunities for newnean that it forms a base for a new paradigm for soliton-
applications of and developments in soliton theldy19]. In based transmission in optical fiber links.
particular, new and interesting soliton dynamics takes place The fundamental soliton has energy proportional to the
if the nonlinearity and dispersion vary periodically with dis- fiber dispersion and inversely proportional to the pulse width
tance down the fib€i8,9]. A solitary wave can survive such (see, e.g.[2,5,20). To keep the signal-to-noise ratio large
a structural perturbation, although the pulse has features thanough (as required for good system performancene
make it drastically different from a traditional soliton. Basic needs to operate the fiber not too close to the zero-dispersion
soliton properties such as invariafduring propagation point. On the other hand, a jitter in pulse arrival times, which
shape and power, determined by a balance between averagssults from the Gordon-Haus effd@1], is proportional to
nonlinearity and average dispersion, have to be reconsiderdte fiber dispersion. To overcome timing jitter, it is advanta-
in the case of large variations of the dispersion. Recentlygeous to transmit solitons at wavelengths close to the zero-
discovered dispersion-managed solitds-19] occur as a  dispersion point. It is then clear that it would be desirable to
result of a complex balance among the effects of the varyingroduce a finite-energy soliton pulse that can propagate in a
local dispersion, fiber loss, periodic amplification, nonlinear-fiber with low dispersion. Operation at very low average dis-
ity, and residual dispersion. Interplay between these factorpersion allows for the reduction of timing jitter for a number
leads to a rich variety of possible transmission regimes. Thef channels. This is of crucial importance for wavelength-
pulse’s dynamics shows rapid oscillations of its power andlivision multiplexing transmission that is part of the key
width in the compensation period and slow evolution onmethod of increasing transmission capacity of optical fiber
longer scales due to fiber nonlinearity and residual dispersiolines.

[9]. Numerical solutions have revealed the following features In this Rapid Communication we examine DM optical
of the dispersion-managed soliton. The shape of the evolvingoliton transmission in amplified fiber lines at zero average
pulse(in its central regionis not always the sech profile of dispersion. Note that the obtained results are rather general
the nonlinear Schidinger equatior{NLSE) soliton, but var- and can be applied to many soliton-bearing systems. While
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some investigation has already been done in the lossless situ- The fast(over one periofdynamics of the central part of
ation [13], soliton dynamics in a fiber with zero average the dispersion-managed soliton is given, to leading order, by
dispersion has not yet been considered for the important cag§(z,t) = |A|exp(¢) with
in which the amplification distance is of the same order as

the compensation period. The approach developed in our Az 1)|2= |Q(x)[?

previous wor{9,11,19 (see als¢10,12,17,18 allows us to ' T(z) °’

describe the dynamics of the DM soliton and to obtain the

dependence of its average energy and chirp on the pulse d¢ M(2)t

width. We have found that for a breathing soliton propagat- ot T(2) @

ing in a system with zero net dispersion there exists a mini-
mal possible average energy for a fixed strength of the distsee[9,11,19, and references therein for detaildere x

persion map for the soliton to be stable. Using scaling=t/T(z) and the evolution off(z) andM(z) is given by
properties of the model, we extend our results to a range of

similar dispersion maps. dT
The dynamics of a breathing DM soliton down a fiber line E_4d(Z)M’
is governed by the nonlinear Scllinger equation with pe-
riodic coefficients dM d(z)C; c¢(2)C,
dz T T2 @
iA,+d(2)Ayx+c(2)|A?A=0. )

C, and C, are constants related to the pulse shape
thr0u2g|gh|2Cl=f|Qx|2dx/(fx2|Q|2.dx) and Cz=[|_Q|4d_x/
Hered(2) = \2D(2)L/(47C.12) [C.. is the speed of ligh (4fx°|Q|?dx). The lumped acpon of the amplifiers is ac-

is a pa(rzzmetgfl(o )ps(in7tThee S?e[se;t paper is the d?spﬂ;)r- _coun_ted for by the transformation of the pulse power at the
sion coefficient measured in psmxkm), and c(2) junctions corresponding to the locations of the amplifiers.
= PoL o2 exp(—2L~2)]. Here we assume t\,No-step disper- Statignary soliton propagation corresponds. to the pgriodic
sion management and the upper indi€e®) correspond to so!utlons of Eqs(3). We have f_ound _that_ periodic solutions
the first and second fibers, respectively. The quantil? is exist when the path-average dispersion is zero and even nor-

the corresponding nonlinear coefficient apdescribes fiber ma_ll. Because solltqn transmission at Fhe.zero-dispersion
losses, assumed equal for both fibers. The propagation di oint I very interesting f_or practical apph_catlons due to the
tancez1is normalized by the dispersion.compensation periocéuppressed timing jitter, in what fOI!OW.S without loss .Of gen-
L and timet is normalized by the parametey; the envelape rahty,.we focu.s on this case. Qqahtatlvely, the possibility of
of the electric fieldE= E(T.Z) is scaled by, the power pa- bglancmg nonlinear and dispersive effgct_s at zero or nqrmal
Py The am Iificati<')n distance can be different from dispersion results from the large variation of the soliton
rra]\me 0- > ampiitt qi | The ch S width during one compensation period and the self-similar
the compeDsatlon period in general. The chromatic dispelgy,cyyre of the DM soliton given by E€R). The total phase
siond(z) =d(2) +(d) represents the sum of a rapidly vary- shift can be found from [d(TM)]/dz=4dM?
ing (over one compensation pedeuigh local dispersion and  + [C,d(z)]/T2 — [C,c(2)]/T. Here, TM is proportional to
a constant residual dispersio(df<d). In this Rapid Com- the rapidly oscillating part of the soliton phase in accordance
munication we considegfwithout loss of generalitythe spe-  with Eq. (2). The requirement for the recovery of the soliton
cific example of a transmission line that consists of fiberyDM pulse phase (except linear growth at the
with anomalous dispersiofiD=D=3.57 psinmxkm)] end of the compensation section leads to the condition
and with normal dispersiofD®=—-D=-3.57 psfnm  {(d(2)[4M?+ C,/T?])=([C,c(2)]/T(2) ). The physical in-
xkm)] of equal lengths of 40 km. The amplification distanceterpretation of this condition is obvious: The quantityl3
is equal to the compensation peri@,=L=80 km. The +C,/T?=0Q?2is nothing more than the square of the spectral
evolution equatior(1) was then solved numerically using a bandwidth(} of a chirped pulse. The total phase shift due to
pseudospectral meth¢@2] and the following parameter val- pulse chirping, dispersion, and nonlinearity should be zero
ues were taken. The fiber attenuation was chosen as 0.Zhalanced on average for true periodic propagation. It can
dB/km in both fiber sections and the in-line amplifiers wereeasily be seen that the requirement of the anomalous average
assumed to compensate for the loss between two consecutidéspersion(d)>0, which provides for the existence of the
amplifiers, which gives an amplifier gain of 16.8 dB. The traditional NLSE soliton, is replaced for the DM soliton by
nonlinear refractive index was set ton,=3.2 the conditiond.=(dQ?)>0, which can be satisfied at zero
X 107 2° m?W. Finally, the effective fiber area was taken to and even normal path-averaged dispersion.
be Ag¢¢=55 um? for both fibers. First we demonstrate that periodic breathing-like soliton
As was previously shown ifi9-12,17,19 the evolution  propagation is indeed possible even if the path-average dis-
of the central(energy-bearingpart of the DM pulse can be persion is zero. The fast evolution of the pulse width and
approximately described by a system of ordinary differentialpeak power in the system, with zero average dispersion, is
equations(ODES for the pulse width and chirp. This ap- shown in Figs. 1 and 2, respectively. Evidently, in contrast to
proach is very useful for the approximate determination ofthe lossless case studied[@8], in the present system power
the optimal input signal. The validity of this optimal input evolution is highly asymmetrical due to fiber losses. The
signal can then be verified from numerical solutions of thepeak powelP(z) at any point within the compensation cell is
full equation. related to the power after amplifid?, by the relationship
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FIG. 1. Evolution of the pulse width of a dispersion-managed FIQ. 3. Pulse widths taken_ at the two chirp-free_poi_nts plotted as
soliton in a system with zero average dispersion over one comperunctions of the average soliton energy. The solid line is for the
sation period. The two minima correspond to the chirp-free pointdVidth of the chirped pulse at the beginning of the section and the
that are optimal for the launching of a transform-limited pulse intodashed line is for the pulse widths at the first and second chirp-free
the system. The solid line corresponds to the full numerical solutiofP©iNts, respectively. It can be seen that there exists a minimal av-
of (1) and the dashed linevhich can hardly be distinguished from ©rage energy of the dispersion-managed soliton propagating at zero
the solid ling corresponds to the solution of the approximate ODEs.2verage dispersion.

i chirping. An analytical method for finding the locations of
P(2)=P.exp(-2y2)/T(2). Figures 1 and 2 also show a ihe chirp-free points is presented[ib6]. However, this ap-

comparison of the solutions of the approximate ODEs anthroach cannot be applied to a system with zero average dis-
Eq. (1). Solid lines correqund to }he full numerical splqtlon persion. In this Rapid Communication we use a formalism
of Eq. (1) and the dashed lingsvhich can hardly be distin- - geyeloped i9,18] to determine the locations of the chirp-
guished from the solid lingscorrespond to the solution of free points along the map. There are only two optimal launch
the approximate ODEs. It should be noted that in contrast Doints for a given map. In Fig. 3 the dependence of the
a conventional soliton, a dispersion-managed pulse experiyerage soliton energy on the pulse width is plotted. The
ences breathing-like oscillations of its width over the amp“'pulse widths are taken at the two chirp-free points that cor-
fication period. Therefore, to describe the dependence of thr‘“espond to the minima of the varying pulse width in Fig. 1.
pulse width on the system parameters we introduce as afine solid line is for the pulse width at the beginning of the
appropriate characteristic pulse width the width at the chirpgection(where the soliton is chirpedand the dashed line is
free points of the map. At these poiritecal minima of the 4 {he first and second chirp-free points. It can be seen that

pulse width in Fig. 1 a Fourier-limited pulse can be the widths are about the same at these optimal launch points
launched into the system. At other poiriscluding the am-  anq cannot be distinguished within the resolution of Fig. 3.
plifier locations, the launched soliton needs additional pre- 5p, important observation from Fig. 3 is that, in contrast to
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FIG. 2. Peak power evolution along the compensation cell. The FIG. 4. Comparison of the evolution of peak power of the input
two maxima of the peak power correspond to the minimal pulseGaussian pulse with optimal initial parameters, corresponding to the
widths in the section. Peak power is recovered at the end of thdispersion-managed solitaisolid line), an unchirped input pulse
section by an optimal amplifier. The comparison of the ODE and(dotted ling, and an input pulse with arbitrary power, but with the
PDE is shown to be similar to Fig. 1. optimal chirp(dashed ling
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the conventional fundamental soliton, in a system with zero It is worth noting that the results obtained above can be
average path dispersion, there exists a minimum energy fapplied to the problem of the generation of stretched pulses
fixed system parameters. This dependence is rather differeift additive mode-locking laser system$]. Indeed, a

from the empirical formula found ifi8] for the energy of a  stretched pulse in an additive mode-locking laser system was

dispersion-managed soliton in a system with anomalous asuggested before the idea of using dispersion-managed soli-
erage dispersion. tons in optical fiber transmission. The similarity that exists

Next let us consider the long-term pulse evolution. Webetween these two problems allows the results obtained for

have verified that choosing an input Gaussian pulse wit§0liton transmission to be applied to the generation of
optimal parameters determined from the ODEs leads to supstretched pulses in mode-locking laser systems. In particular,

stantial improvement in soliton transmission. One can alterV® ?Iso FOte ttuai In ths case dO'I zelr)ct> net d;spe{ S'O?’ th;:‘re
natively launch a chirp-free soliton at the optimal points or,EXISt scalings that can be used 1o obtain optimal pulses for

; : : ther dispersion maps. For instance, changing the local dis-
by appropriate phase modulation, launch a pulse with th(gersions a®, ., = kD= D4, we obtain periodic solutions

required chirp at other point.s. In Fig. 4 t_he evolution of thfadsimilar to those found in this Rapid Communication, but
peak power qf _the dlfferen'g input pulses is §hown. The soli With a pulse WIdthT, o= VK Tog, ENEIGYE = \KEoq,

line is for an initial pulse with power and chirp equal to that and chirp parametel ..~ x~ 1M

of the qlispgrsion-ma_naged soliton_ of the same width, the In conclusion, we nﬁgve exar%li%.ed the propagation of a
dotted line is for an input pulse with the same power andpimeq preathing soliton in a dispersion-managed optical
width, bgt without chirp, gnd the dashed line is for_ an 'n_pUtampIifier system with zero average dispersion. We have
pulse with the same width and chirp as the dispersionfoung that for a fixed strength of the map there exists a
managed soliton, but with different power. It can be seen thaginimal energy for such a soliton. Loc&ver one periog
stable propagation can be achieved with a maximal fitting okyolution of the soliton peak power in the system considered
the input pulse parameters with those of the dispersionis asymmetrical, in contrast to lossless systems. The results
managed soliton corresponding to the given map. In particusbtained are further confirmation of the great potential of
lar, an appropriate chirp given by an external modulator caWDM soliton transmission in the realization of future ultra-
reduce the chromatic dispersion penalty relative to the chirplarge capacity communication systems.

less case. Alternatively, a chirp-free pulse can be launched at This research has been supported in part by Russian
one of the optimal points of the mdg,16]. Foundation for Basic Resear¢Brant No. 96-02-191313a
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