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Solitary waves in nonlinear dispersive systems with zero average dispersion
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The dynamics of a solitary wave in a nonlinear lossy system with varying dispersion and periodic amplifi-
cation is examined. It is demonstrated that in contrast to the traditional soliton model in which the average
dispersion balances the nonlinearity, in a nonlinear system with varying dispersion, stable pulse propagation is
possible even if the average dispersion is zero. As a practical example, we demonstrate dispersion-managed
soliton transmission in a cascaded optical amplifier system at zero average dispersion. The possibility of
transmitting a soliton with finite energy at zero dispersion~when timing jitter is suppressed! is very attractive
for practical applications.@S1063-651X~98!50307-8#

PACS number~s!: 42.65.Tg, 03.40.Kf
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A nonlinear solitary wave is an example of a stable wa
packet that preserves its shape during propagation in a
linear dispersive medium~see, e.g.,@1–5#, and references
therein!. As is well known, this stability is provided by
balance between the effects of dispersion and nonlinea
Based on this rather general idea of compensating dispe
broadening by nonlinearity, the soliton concept has b
used successfully in a wide range of physical and pract
applications. Interest in soliton theory has additionally be
stimulated by the discovery and development of the inve
scattering transform, which allows powerful mathemati
tools to be applied to the investigation of solitons in a vari
of physical applications. Integrable soliton systems mo
important physical phenomena, for instance, optical sig
propagation in fiber transmission lines. Much progress
already been made in the further development of soli
theory in this context. Recent developments in lightwa
communication systems have created opportunities for
applications of and developments in soliton theory@6–19#. In
particular, new and interesting soliton dynamics takes pl
if the nonlinearity and dispersion vary periodically with di
tance down the fiber@8,9#. A solitary wave can survive suc
a structural perturbation, although the pulse has features
make it drastically different from a traditional soliton. Bas
soliton properties such as invariant~during propagation!
shape and power, determined by a balance between ave
nonlinearity and average dispersion, have to be reconsid
in the case of large variations of the dispersion. Rece
discovered dispersion-managed solitons@6–19# occur as a
result of a complex balance among the effects of the vary
local dispersion, fiber loss, periodic amplification, nonline
ity, and residual dispersion. Interplay between these fac
leads to a rich variety of possible transmission regimes.
pulse’s dynamics shows rapid oscillations of its power a
width in the compensation period and slow evolution
longer scales due to fiber nonlinearity and residual disper
@9#. Numerical solutions have revealed the following featu
of the dispersion-managed soliton. The shape of the evolv
pulse~in its central region! is not always the sech profile o
the nonlinear Schro¨dinger equation~NLSE! soliton, but var-
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ies from a sech profile to a Gaussian shape and further
sinclike profile with the change of the map strength. T
evolving pulse is chirped~i.e., the pulse phase has a no
trivial time dependence!. The energy of the stable breathin
pulse is well above that of the NLSE soliton with the sam
pulse width when the fiber has the corresponding aver
dispersion. Due to the chirp of the pulse the interaction
tween two neighboring dispersion-managed solitons is s
pressed as a result of the fast rotation of the relative ph
Numerical modeling of the lossless system has shown
stable solitonlike propagation is possible along a fiber w
zero and even normal average dispersion@13#. This regime
clearly demonstrates a principal difference between
dispersion-managed~DM! soliton and the regular fundamen
tal soliton. A DM soliton is then a new kind of informatio
carrier whose features differ significantly from that of th
fundamental soliton. Indeed, the properties of the DM soli
mean that it forms a base for a new paradigm for solito
based transmission in optical fiber links.

The fundamental soliton has energy proportional to
fiber dispersion and inversely proportional to the pulse wi
~see, e.g.,@2,5,20#!. To keep the signal-to-noise ratio larg
enough ~as required for good system performance!, one
needs to operate the fiber not too close to the zero-disper
point. On the other hand, a jitter in pulse arrival times, whi
results from the Gordon-Haus effect@21#, is proportional to
the fiber dispersion. To overcome timing jitter, it is advan
geous to transmit solitons at wavelengths close to the z
dispersion point. It is then clear that it would be desirable
produce a finite-energy soliton pulse that can propagate
fiber with low dispersion. Operation at very low average d
persion allows for the reduction of timing jitter for a numb
of channels. This is of crucial importance for waveleng
division multiplexing transmission that is part of the ke
method of increasing transmission capacity of optical fib
lines.

In this Rapid Communication we examine DM optic
soliton transmission in amplified fiber lines at zero avera
dispersion. Note that the obtained results are rather gen
and can be applied to many soliton-bearing systems. W
R44 © 1998 The American Physical Society
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some investigation has already been done in the lossless
ation @13#, soliton dynamics in a fiber with zero averag
dispersion has not yet been considered for the important
in which the amplification distance is of the same order
the compensation period. The approach developed in
previous work@9,11,19# ~see also@10,12,17,18#! allows us to
describe the dynamics of the DM soliton and to obtain
dependence of its average energy and chirp on the p
width. We have found that for a breathing soliton propag
ing in a system with zero net dispersion there exists a m
mal possible average energy for a fixed strength of the
persion map for the soliton to be stable. Using scal
properties of the model, we extend our results to a rang
similar dispersion maps.

The dynamics of a breathing DM soliton down a fiber li
is governed by the nonlinear Schro¨dinger equation with pe-
riodic coefficients

iAz1d~z!Att1c~z!uAu2A50. ~1!

Hered(z)5l0
2D(z)L/(4pCet0

2) @Ce is the speed of light,t0

is a parameter~10 ps in the present paper!, D is the disper-
sion coefficient measured in ps/~nm3km!, and c(z)
5P0Ls (1,2) exp(22Lgz)#. Here we assume two-step dispe
sion management and the upper indices~1,2! correspond to
the first and second fibers, respectively. The quantitys (1,2) is
the corresponding nonlinear coefficient andg describes fiber
losses, assumed equal for both fibers. The propagation
tancez is normalized by the dispersion compensation per
L and timet is normalized by the parametert0 ; the envelope
of the electric fieldE5E(T,Z) is scaled by the power pa
rameterP0 . The amplification distance can be different fro
the compensation period in general. The chromatic disp
sion d(z)5d̃(z)1^d& represents the sum of a rapidly var
ing ~over one compensation period! high local dispersion and
a constant residual dispersion (^d&!d̃). In this Rapid Com-
munication we consider~without loss of generality! the spe-
cific example of a transmission line that consists of fib
with anomalous dispersion@D (1)5D53.57 ps/~nm3km!#
and with normal dispersion@D (2)52D523.57 ps/~nm
3km!# of equal lengths of 40 km. The amplification distan
is equal to the compensation periodZa5L580 km. The
evolution equation~1! was then solved numerically using
pseudospectral method@22# and the following parameter val
ues were taken. The fiber attenuation was chosen as
dB/km in both fiber sections and the in-line amplifiers we
assumed to compensate for the loss between two consec
amplifiers, which gives an amplifier gain of 16.8 dB. Th
nonlinear refractive index was set ton253.2
310220 m2/W. Finally, the effective fiber area was taken
be Ae f f555 mm2 for both fibers.

As was previously shown in@9–12,17,19# the evolution
of the central~energy-bearing! part of the DM pulse can be
approximately described by a system of ordinary differen
equations~ODEs! for the pulse width and chirp. This ap
proach is very useful for the approximate determination
the optimal input signal. The validity of this optimal inpu
signal can then be verified from numerical solutions of
full equation.
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The fast~over one period! dynamics of the central part o
the dispersion-managed soliton is given, to leading order
A(z,t)5uAuexp(if) with

uA~z,t !u25
uQ~x!u2

T~z!
,

]f

]t
52

M ~z!t

T~z!
~2!

~see @9,11,19#, and references therein for details!. Here x
5t/T(z) and the evolution ofT(z) andM (z) is given by

dT

dz
54d~z!M ,

dM

dz
5

d~z!C1

T3 2
c~z!C2

T2 ; ~3!

C1 and C2 are constants related to the pulse sha
through C15* uQxu2dx/(*x2uQu2dx) and C25* uQu4dx/
(4*x2uQu2dx). The lumped action of the amplifiers is ac
counted for by the transformation of the pulse power at
junctions corresponding to the locations of the amplifie
Stationary soliton propagation corresponds to the perio
solutions of Eqs.~3!. We have found that periodic solution
exist when the path-average dispersion is zero and even
mal. Because soliton transmission at the zero-dispers
point is very interesting for practical applications due to t
suppressed timing jitter, in what follows without loss of ge
erality, we focus on this case. Qualitatively, the possibility
balancing nonlinear and dispersive effects at zero or nor
dispersion results from the large variation of the solit
width during one compensation period and the self-sim
structure of the DM soliton given by Eq.~2!. The total phase
shift can be found from @d(TM)#/dz54dM2

1 @C1d(z)#/T2 2 @C2c(z)#/T. Here,TM is proportional to
the rapidly oscillating part of the soliton phase in accordan
with Eq. ~2!. The requirement for the recovery of the solito
~DM pulse! phase ~except linear growth! at the
end of the compensation section leads to the condi
^d(z)@4M21 C1 /T2#&5^@C2c(z)#/T(z) &. The physical in-
terpretation of this condition is obvious: The quantity 4M2

1C1 /T25V2 is nothing more than the square of the spect
bandwidthV of a chirped pulse. The total phase shift due
pulse chirping, dispersion, and nonlinearity should be z
~balanced! on average for true periodic propagation. It c
easily be seen that the requirement of the anomalous ave
dispersion^d&.0, which provides for the existence of th
traditional NLSE soliton, is replaced for the DM soliton b
the conditionde f f5^dV2&.0, which can be satisfied at zer
and even normal path-averaged dispersion.

First we demonstrate that periodic breathing-like solit
propagation is indeed possible even if the path-average
persion is zero. The fast evolution of the pulse width a
peak power in the system, with zero average dispersion
shown in Figs. 1 and 2, respectively. Evidently, in contras
the lossless case studied in@13#, in the present system powe
evolution is highly asymmetrical due to fiber losses. T
peak powerP(z) at any point within the compensation cell
related to the power after amplifierPa by the relationship
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P(Z)5Paexp(22gZ)/T(Z). Figures 1 and 2 also show
comparison of the solutions of the approximate ODEs a
Eq. ~1!. Solid lines correspond to the full numerical solutio
of Eq. ~1! and the dashed lines~which can hardly be distin-
guished from the solid lines! correspond to the solution o
the approximate ODEs. It should be noted that in contras
a conventional soliton, a dispersion-managed pulse exp
ences breathing-like oscillations of its width over the amp
fication period. Therefore, to describe the dependence of
pulse width on the system parameters we introduce as
appropriate characteristic pulse width the width at the ch
free points of the map. At these points~local minima of the
pulse width in Fig. 1! a Fourier-limited pulse can b
launched into the system. At other points~including the am-
plifier locations!, the launched soliton needs additional pr

FIG. 1. Evolution of the pulse width of a dispersion-manag
soliton in a system with zero average dispersion over one com
sation period. The two minima correspond to the chirp-free po
that are optimal for the launching of a transform-limited pulse in
the system. The solid line corresponds to the full numerical solu
of ~1! and the dashed line~which can hardly be distinguished from
the solid line! corresponds to the solution of the approximate OD

FIG. 2. Peak power evolution along the compensation cell. T
two maxima of the peak power correspond to the minimal pu
widths in the section. Peak power is recovered at the end of
section by an optimal amplifier. The comparison of the ODE a
PDE is shown to be similar to Fig. 1.
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chirping. An analytical method for finding the locations
the chirp-free points is presented in@16#. However, this ap-
proach cannot be applied to a system with zero average
persion. In this Rapid Communication we use a formali
developed in@9,18# to determine the locations of the chirp
free points along the map. There are only two optimal laun
points for a given map. In Fig. 3 the dependence of
average soliton energy on the pulse width is plotted. T
pulse widths are taken at the two chirp-free points that c
respond to the minima of the varying pulse width in Fig.
The solid line is for the pulse width at the beginning of t
section~where the soliton is chirped! and the dashed line is
for the first and second chirp-free points. It can be seen
the widths are about the same at these optimal launch po
and cannot be distinguished within the resolution of Fig.
An important observation from Fig. 3 is that, in contrast

FIG. 4. Comparison of the evolution of peak power of the inp
Gaussian pulse with optimal initial parameters, corresponding to
dispersion-managed soliton~solid line!, an unchirped input pulse
~dotted line!, and an input pulse with arbitrary power, but with th
optimal chirp~dashed line!.
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FIG. 3. Pulse widths taken at the two chirp-free points plotted
functions of the average soliton energy. The solid line is for
width of the chirped pulse at the beginning of the section and
dashed line is for the pulse widths at the first and second chirp-
points, respectively. It can be seen that there exists a minimal
erage energy of the dispersion-managed soliton propagating at
average dispersion.
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the conventional fundamental soliton, in a system with z
average path dispersion, there exists a minimum energy
fixed system parameters. This dependence is rather diffe
from the empirical formula found in@8# for the energy of a
dispersion-managed soliton in a system with anomalous
erage dispersion.

Next let us consider the long-term pulse evolution. W
have verified that choosing an input Gaussian pulse w
optimal parameters determined from the ODEs leads to s
stantial improvement in soliton transmission. One can al
natively launch a chirp-free soliton at the optimal points
by appropriate phase modulation, launch a pulse with
required chirp at other points. In Fig. 4 the evolution of t
peak power of the different input pulses is shown. The so
line is for an initial pulse with power and chirp equal to th
of the dispersion-managed soliton of the same width,
dotted line is for an input pulse with the same power a
width, but without chirp, and the dashed line is for an inp
pulse with the same width and chirp as the dispersi
managed soliton, but with different power. It can be seen
stable propagation can be achieved with a maximal fitting
the input pulse parameters with those of the dispers
managed soliton corresponding to the given map. In part
lar, an appropriate chirp given by an external modulator
reduce the chromatic dispersion penalty relative to the ch
less case. Alternatively, a chirp-free pulse can be launche
one of the optimal points of the map@8,16#.
s,

I.
rm

J

nd

n,
.

tt
o
or
nt

v-

h
b-
r-
,
e

d

e
d
t
-

at
f
-

u-
n
-
at

It is worth noting that the results obtained above can
applied to the problem of the generation of stretched pu
in additive mode-locking laser systems@6#. Indeed, a
stretched pulse in an additive mode-locking laser system
suggested before the idea of using dispersion-managed
tons in optical fiber transmission. The similarity that exis
between these two problems allows the results obtained
soliton transmission to be applied to the generation
stretched pulses in mode-locking laser systems. In particu
we also note that in the case of zero net dispersion, th
exist scalings that can be used to obtain optimal pulses
other dispersion maps. For instance, changing the local
persions asDnew5kD5kDold , we obtain periodic solutions
similar to those found in this Rapid Communication, b
with a pulse widthTnew5AkTold , energyEnew5AkEold ,
and chirp parameterMnew5k21Mold .

In conclusion, we have examined the propagation o
chirped breathing soliton in a dispersion-managed opt
amplifier system with zero average dispersion. We ha
found that for a fixed strength of the map there exists
minimal energy for such a soliton. Local~over one period!
evolution of the soliton peak power in the system conside
is asymmetrical, in contrast to lossless systems. The res
obtained are further confirmation of the great potential
WDM soliton transmission in the realization of future ultr
large capacity communication systems.

This research has been supported in part by Rus
Foundation for Basic Research~Grant No. 96-02-19131-a!.
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